Concentration fluctuations in nonisothermal reaction-diffusion systems.

نویسندگان

  • José M Ortiz de Zárate
  • Jan V Sengers
  • Dick Bedeaux
  • Signe Kjelstrup
چکیده

In this paper a simple reaction-diffusion system, namely a binary fluid mixture with an association-dissociation reaction between the two components, is considered. Fluctuations at hydrodynamic spatiotemporal scales when a temperature gradient is present in this chemically reacting system are studied. First, fluctuating hydrodynamics when the system is in global equilibrium (isothermal) is reviewed. Comparing the two cases, an enhancement of the intensity of concentration fluctuations in the presence of a temperature gradient is predicted. The nonequilibrium concentration fluctuations are spatially long ranged, with an intensity depending on the wave number q. The intensity exhibits a crossover from a proportional, variantq(-4) to a proportional, variantq(-2) behavior depending on whether the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture. This opens a possibility to distinguish between diffusion- or activation-controlled regimes of the reaction by measuring these fluctuations. In addition, the possible observation of these fluctuations in nonequilibrium molecular dynamics simulations is considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case.

In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature gradient, while still being far away from any chemical instability. This study extends the analysis ...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Spatially adaptive stochastic numerical methods for intrinsic fluctuations in reaction-diffusion systems

Stochastic partial differential equations are introduced for the continuum concentration fields of reaction-diffusion systems. The stochastic partial differential equations account for fluctuations arising from the finite number of molecules which diffusively migrate and react. Spatially adaptive stochastic numerical methods are developed for approximation of the stochastic partial differential...

متن کامل

Anomalous kinetics in diffusion limited reactions linked to non-Gaussian concentration probability distribution function.

We investigate anomalous reaction kinetics related to segregation in the one-dimensional reaction-diffusion system A + B → C. It is well known that spatial fluctuations in the species concentrations cause a breakdown of the mean-field behavior at low concentration values. The scaling of the average concentration with time changes from the mean-field t(-1) to the anomalous t(-1/4) behavior. Usin...

متن کامل

Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 3  شماره 

صفحات  -

تاریخ انتشار 2007